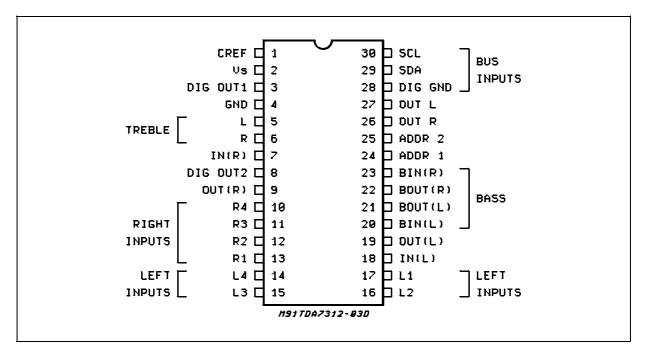


DIGITAL CONTROLLED STEREO AUDIO PROCESSOR

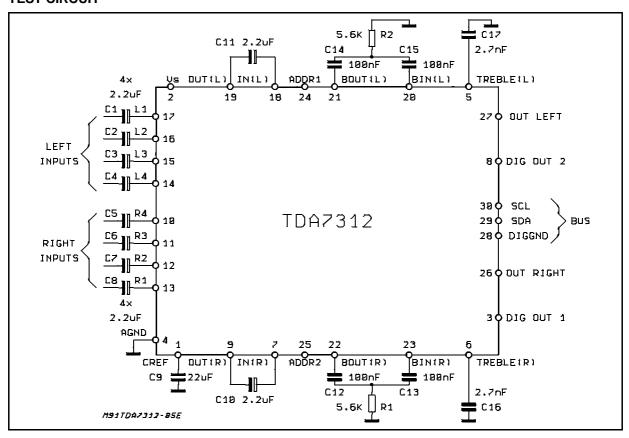
- INPUT MULTIPLEXER:
 - 4 STEREO INPUTS
- FOUR SELECTABLE ADDRESSES
- TWO DIGITAL CONTROL OUTPUTS
- INPUT AND OUTPUT FOR EXTERNAL EQUALIZER OR NOISE REDUCTION SYS-TEM
- VOLUME CONTROL IN 1.25dB STEPS
- TREBLE AND BASS CONTROL
- TWO SPEAKER ATTENUATORS:
 - INDEPENDENT SPEAKERS CONTROL IN 1.25dB STEPS
 - INDEPENDENT MUTE FUNCTION
- ALL FUNCTIONS PROGRAMMABLE VIA SE-RIAL I²C BUS

The TDA7312 is a volume, tone (bass and treble) balance (Left/Right) processor for quality audio applications.



Control is accomplished by serial I²C bus microprocessor interface.

The AC signal setting is obtained by resistor networks and switches combined with operational amplifiers.


Thanks to the used BIPOLAR/CMOS Tecnology, Low Distortion, Low Noise and Low DC stepping are obtained.

PIN CONNECTION (Top view)

November 1999 1/13

TEST CIRCUIT

THERMAL DATA

Symbol	Description	SDIP30	Unit
R _{th j-pins}	Thermal Resistance Junction-pins max	85	°C/W

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	Operating Supply Voltage	10.2	V
T _{amb}	Operating Ambient Temperature	0 to 70	°C
T _{stg}	Storage Temperature Range	-40 to 150	°C

QUICK REFERENCE DATA

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vs	Supply Voltage	6	9	10	V
V_{CL}	Max. input signal handling	2			Vrms
THD	Total Harmonic Distortion V = 1Vrms f = 1KHz		0.01	0.1	%
S/N	Signal to Noise Ratio		106		dB
Sc	Channel Separation f = 1KHz		103		dB
	Volume Control 1.25dB step	-78.75		0	dB
	Bass and Treble Control 2db step	-14		+14	dB
	Fader and Balance Control 1.25dB step	-38.75		0	dB
	Mute Attenuation		100		dB

BLOCK DIAGRAM

ELECTRICAL CHARACTERISTICS (refer to the test circuit $T_{amb} = 25^{\circ}C$, $V_{S} = 9V$, $R_{L} = 10K\Omega$, $R_{G} = 600\Omega$, all controls flat (G = 0), f = 1KHz unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
SUPPLY						
Vs	Supply Voltage		6	9	10	V
Is	Supply Current			8	11	mA
SVR	Ripple Rejection		60	80		dB
INPUT SEL	ECTORS					
R _{II}	Input Resistance	Input 1, 2, 3	35	50	70	ΚΩ
V_{CL}	Clipping Level		2	2.5		Vrms
Sin	Input Separation (2)		80	100		dB
R _L	Output Load resistance		2			ΚΩ
e _{IN}	Input Noise			2		μV
VOLUME C	ONTROL					
R _{IV}	Input Resistance		20	33	50	kΩ
Crange	Control Range		70	75	80	dB
A _{VMIN}	Min. Attenuation		-1	0	1	dB
A _{VMAX}	Max. Attenuation		70	75	80	dB
A _{STEP}	Step Resolution		0.5	1.25	1.75	dB
E _A	Attenuation Set Error	Av = 0 to -20dB Av = -20 to -60dB	-1.25 -3	0	1.25 2	dB dB
E _T	Tracking Error				2	dB
V _{DC}	DC Steps	adjacent attenuation steps From 0dB to Av max		0 0.5	3 7.5	mV mV
SPEAKER /	ATTENUATORS		I			
C _{range}	Control Range		35	37.5	40	dB
S _{STEP}	Step Resolution		0.5	1.25	1.75	dB
E _A	Attenuation set error				1.5	dB
A _{MUTE}	Output Mute Attenuation		80	100		dB
V _{DC}	DC Steps	adjacent att. steps from 0 to mute		0 1	3 10	mV mV
BASS CON	TROL (1)		I			1
Gb	Control Range	Max. Boost/cut	<u>+</u> 12	<u>+</u> 14	<u>+</u> 16	dB
B _{STEP}	Step Resolution		1	2	3	dB
R _B	Internal Feedback Resistance		34	44	58	ΚΩ
	ONTROL (1)		•		•	
Gt	Control Range	Max. Boost/cut	<u>+</u> 13	<u>+</u> 14	<u>+</u> 15	dB
T _{STEP}	Step Resolution		1	2	3	dB
DIGITAL O	JTPUTS		·			
V _{CESAT}		V _{OUT} = Low I _C =1mA		0.2	0.3	V
I _{leak}	I leakage	$V_{OUT} = V_{S}$			10	μΑ

ELECTRICAL CHARACTERISTICS (continued)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
AUDIO OUT	TPUTS					
V _{OCL}	Clipping Level	d = 0.3%	2	2.5		Vrms
R _L	Output Load Resistance		2			ΚΩ
CL	Output Load Capacitance				10	nF
R _{OUT}	Output resistance		30	75	120	Ω
V _{OUT}	DC Voltage Level		4.2	4.5	4.8	V
GENERAL						•

JENEKAL

eno	Output Noise	BW = 20-20KHz, flat output muted all gains = 0dB		2.5 5	15	μV μV
		A curve all gains = 0dB		3		μV
S/N	Signal to Noise Ratio	all gains = 0dB; V _O = 1Vrms		106		dB
d	Distortion	$\begin{aligned} A_V &= 0, \ V_{IN} = 1 Vrms \\ A_V &= -20 dB V_{IN} = 1 Vrms \\ V_{IN} &= 0.3 Vrms \end{aligned}$		0.01 0.09 0.04	0.1 0.3	% % %
Sc	Channel Separation left/right		80	103		dB
	Total Tracking error	A _V = 0 to -20dB -20 to -60 dB		0	1 2	dB dB

BUS INPUTS

V _{IL}	Input Low Voltage			1	V
V_{IH}	Input High Voltage		3		٧
I _{IN}	Input Current		- 5	+5	μΑ
Vo	Output Voltage SDA Acknowledge	I _O = 1.6mA		0.4	V

ADDRESS PIN (Internal 50K Ω pull down resistor).

Notes:

SDA, SCL, DIG OUT 1, DIG OUT 2 Pins are high impedance when Vs = 0

(2) The selected input is grounded thru the $2.2\mu\text{F}$ capacitor.

Figure 1: Noise vs. Volume/Gain Settings

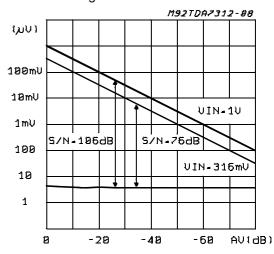



Figure 2: Signal to Noise Ratio vs. Volume Setting

⁽¹⁾ Bass and Treble response see attached diagram (fig.16). The center frequency and quality of the resonance behaviour can be choosen by the external circuitry. A standard first order bass response can be realized by a standard feedback network

Figure 3: Distortion & Noise vs. Frequency

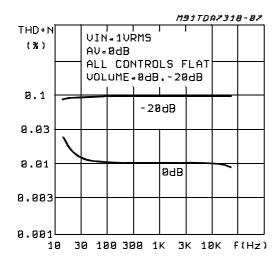


Figure 5: Distortion vs. Load Resistance

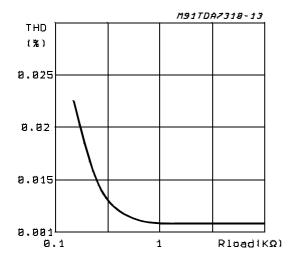
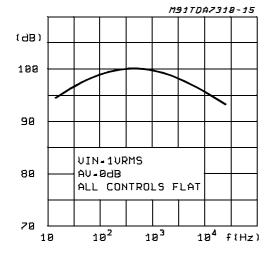
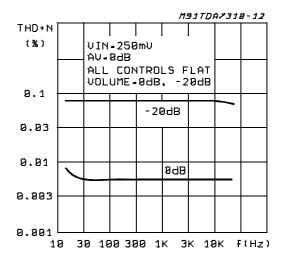
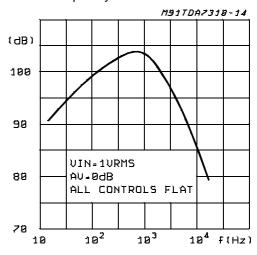


Figure 7: Input Separation (L1 \rightarrow L2, L3, L4) vs. Frequency

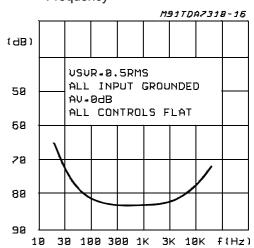

Figure 4: Distortion & Noise vs. Frequency

Figure 6: Channel Separation $(L \rightarrow R)$ vs. Frequency

Figure 8: Supply Voltage Rejection vs. Frequency

4

Figure 9: Output Clipping Level vs. Supply Voltage

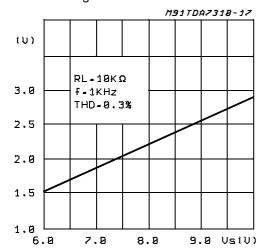


Figure 11: Supply Current vs. Temperature

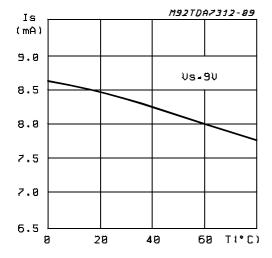


Figure 13: Typical Tone Response (with the ext. components indicated in the test circuit)

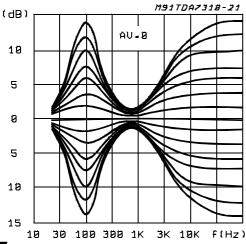


Figure 10: Quiescent Current vs. Supply Voltage

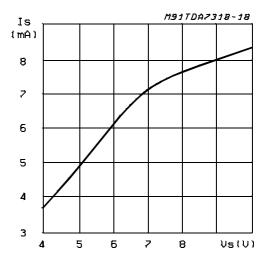
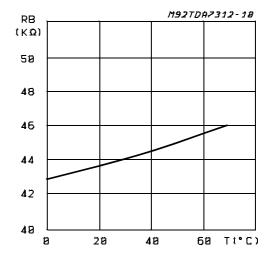



Figure 12: Bass Resistance vs. Temperature

I²C BUS INTERFACE

Data transmission from microprocessor to the TDA7312 and viceversa takes place thru the 2 wires I²C BUS interface, consisting of the two lines SDA and SCL (pull-up resistors to positive supply voltage must be connected).

Data Validity

As shown in fig. 14, the data on the SDA line must be stable during the high period of the clock. The HIGH and LOW state of the data line can only change when the clock signal on the SCL line is LOW.

Start and Stop Conditions

As shown in fig.15 a start condition is a HIGH to LOW transition of the SDA line while SCL is HIGH. The stop condition is a LOW to HIGH transition of the SDA line while SCL is HIGH.

Byte Format

Every byte transferred on the SDA line must contain 8 bits. Each byte must be followed by an ac-

knowledge bit. The MSB is transferred first.

Acknowledge

The master (μ P) puts a resistive HIGH level on the SDA line during the acknowledge clock pulse (see fig. 16). The peripheral (audioprocessor) that acknowledges has to pull-down (LOW) the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during this clock pulse.

The audioprocessor which has been addressed has to generate an acknowledge after the reception of each byte, otherwise the SDA line remains at the HIGH level during the ninth clock pulse time. In this case the master transmitter can generate the STOP information in order to abort the transfer

Transmission without Acknowledge

Avoiding to detect the acknowledge of the audio-processor, the μP can use a simplier transmission: simply it waits one clock without checking the slave acknowledging, and sends the new data.

This approach of course is less protected from misworking and decreases the noise immunity.

Figure 14: Data Validity on the I²CBUS

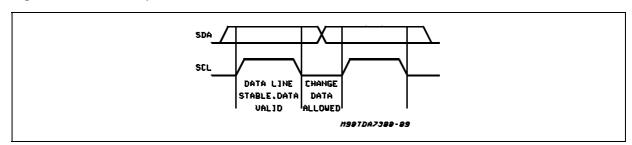


Figure 15: Timing Diagram of I²CBUS

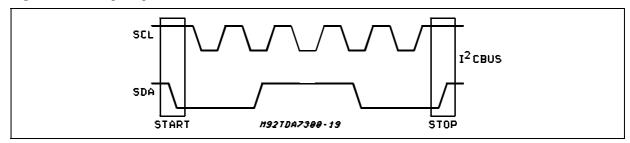
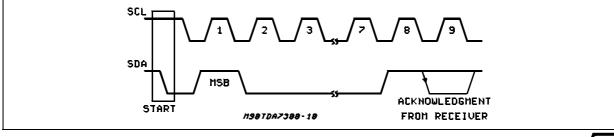
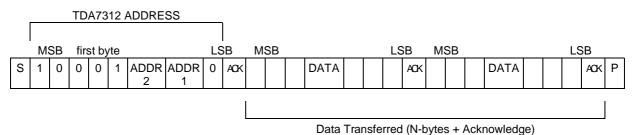



Figure 16: Acknowledge on the I²CBUS

SOFTWARE SPECIFICATION


Interface Protocol

The interface protocol comprises:

- A start condition (s)
- A chip address byte, containing the TDA7312

address (the 8th bit of the byte must be 0). The TDA7312 must always acknowledge at the end of each transmitted byte.

- A sequence of data (N-bytes + acknowledge)
- A stop condition (P)

ACK = Acknowledge

S = Start P = Stop

SOFTWARE SPECIFICATION

Chip address

1 MSB	0	0	0	1	ADDR 2	ADDR 1	0 LSB
----------	---	---	---	---	-----------	-----------	----------

ADDR2	ADDR1	CHIP ADDRESS
0	0	88 HEX
0	1	8A HEX
1	0	8C HEX
1	1	8E HEX

DATA BYTES

MSB							LSB	FUNCTION
0	0	B2	B1	В0	A2	A1	A0	Volume control
1	0	0	B1	B0	A2	A1	A0	Speaker ATT L
1	0	1	B1	В0	A2	A1	A0	Speaker ATT R
0	1	0	D2	D1	S2	S1	S0	Audio switch
0	1	1	0	C3	C2	C1	C0	Bass control
0	1	1	1	C3	C2	C1	C0	Treble control

Ax = 1.25dB steps; Bx = 10dB steps; Cx = 2dB steps; Sx = Input Selector; Dx = Dig Out Pins

SOFTWARE SPECIFICATION (continued)

DATA BYTES (detailed description)

Volume

MSB							LSB	FUNCTION
0	0	B2	B1	В0	A2	A1	A0	Volume 1.25dB steps
					0	0	0	0
					0	0	1	-1.25
					0	1	0	-2.5
					0	1	1	-3.75
					1	0	0	-5
					1	0	1	-6.25
					1	1	0	-7.5
					1	1	1	-8.75
0	0	B2	B1	В0	A2	A1	A0	Volume 10dB steps
		0	0	0				0
		0	0	1				-10
		0	1	0				-20
		0	1	1				-30
		1	0	0				-40
		1	0	1				-50
		1	1	0				-60
		1	1	1				-70

For example a volume of -45dB is given by:

0 0 1 0 0 1 0 0

Speaker Attenuators

MSB							LSB	FUNCTION
1 1	0 0	0 1	B1 B1	B0 B0	A2 A2	A1 A1	A0 A0	Speaker L Speaker R
					0 0 0 0 1 1 1	0 0 1 1 0 0	0 1 0 1 0 1 0	0 -1.25 -2.5 -3.75 -5 -6.25 -7.5 -8.75
			0 0 1 1	0 1 0 1				0 -10 -20 -30
			1	1	1	1	1	Mute

For example attenuation of 25dB on speaker R is given by:

10110100

Audio Switch

MSB							LSB	FUNCTION
0	1	0	D2	D1	S2	S1	S0	Audio Switch
					1	0	0	Stereo 1
					1	0	1	Stereo 2
					1	1	0	Stereo 3
					1	1	1	Stereo 4
				0				DIG. OUT 1 = 0
				1				DIG. OUT 1 = 1
			0					DIG. OUT 2 = 0
			1					DIG. OUT 2 = 1

Bass and Treble

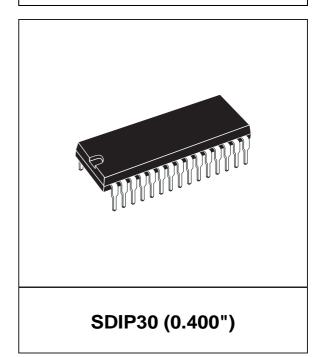
0 0	1 1	1 1	0 1	C3 C3	C2 C2	C1 C1	C0 C0	Bass Treble
				0	0	0	0	-14
				0	0	0	1	-12
				0	0	1	0	-10
				0	0	1	1	-8
				0	1	0	0	-6
				0	1	0	1	-4
				0	1	1	0	-2
				0	1	1	1	0
				4	4	4	4	0
				1	1	1	1	0
				1	1	1	0	2
				1	1	0	1	4
				1	1	0	0	6
				1	0	1	1	8
				1	0	1	0	10
				1	0	0	1	12
				1	0	0	0	14

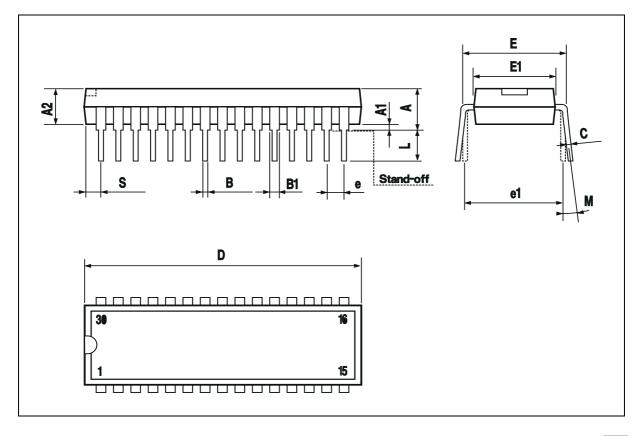
C3 = Sign
For example Bass at -10dB is obtained by the following 8 bit string: 0 1 1 0 0 0 1 0

Status at Power on Reset

Volume = 78.75dB

Treble = Bass = +2dB


Spkrs Attenuators = Mute


Input = Stereo 1

Dig. OUT 1 = Dig. OUT 2 = 1

DIM.		mm		inch				
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
Α			5.08			0.20		
A1	0.51			0.020				
A2	3.05	3.81	4.57	0.12	0.15	0.18		
В	0.36	0.46	0.56	0.014	0.018	0.022		
B1	0.76	0.99	1.40	0.030	0.039	0.055		
С	0.20	0.25	0.36	0.008	0.01	0.014		
D	27.43	27.94	28.45	1.08	1.10	1.12		
Е	10.16	10.41	11.05	0.400	0.410	0.435		
E1	8.38	8.64	9.40	0.330	0.340	0.370		
е		1.778			0.070			
e1		10.16			0.400			
L	2.54	3.30	3.81	0.10	0.13	0.15		
М	0°(min.), 15°(max.)							
S	0.31			0.012				

OUTLINE AND MECHANICAL DATA

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 1999 STMicroelectronics - Printed in Italy - All Rights Reserved

Purchase of I^2C Components of STMicroelectronics, conveys a license under the Philips I^2C Patent Rights to use these components in an I^2C system, provided that the system conforms to the I^2C Standard Specifications as defined by Philips.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

